If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50x+4x^2=223
We move all terms to the left:
50x+4x^2-(223)=0
a = 4; b = 50; c = -223;
Δ = b2-4ac
Δ = 502-4·4·(-223)
Δ = 6068
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6068}=\sqrt{4*1517}=\sqrt{4}*\sqrt{1517}=2\sqrt{1517}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{1517}}{2*4}=\frac{-50-2\sqrt{1517}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{1517}}{2*4}=\frac{-50+2\sqrt{1517}}{8} $
| 6x-11x=1 | | (-x-1)=2x+4 | | 0.25d-7.4=8.2 | | 7x-12=4x-24 | | -6+4h=-14 | | 3(4-5m)=13 | | 42-4v=-50 | | 12x-4(2x=1)=25 | | 5+-7w=47 | | 2x=5x6 | | 2x+10=9x+3 | | 2g-1.65=1.15 | | 4+-2q=-2 | | m/3-4=17 | | 2x/(25x+30)=-6 | | 7z+14=15 | | 4a÷4=20÷4 | | 9=-3w+-6 | | -8g+-21=-85 | | 0.02x=0.9 | | 3z/4+8=2 | | −1(r+8)=0 | | 00.2x-0.1=0.8 | | 3z/4+8=8 | | 2x+-3x=-4+-6 | | -4x-2x=-7+-5 | | 4x+25x=3 | | 3x-6x=-13-5 | | 1/2(4x+2)=-5 | | 1/2(6x)=-9 | | 3x-10=3x+9 | | 3=11-2y |